# The function

The*incomplete beta function ratio*is defined as $$I_x(a,b) = \dfrac{B_x(a,b)}{B(a,b)},\quad 0\le x \le 1,\,a>0,\,b>0,$$ where $B(a,b)$ is the classical beta function and $$B_x(a,b)=\int_0^x t^{a-1}(1-t)^{b-1}\,dt.$$ In the "upper" version the integral goes from $x$ to $1$. To compute this we will use the fact that $$\begin{array}{rcl} I_x(a,b) + I_x^U(a,b) &=& \dfrac{1}{B(a,b)}\left( \int_0^x t^{a-1}(1-t)^{b-1}\,dt + \int_x^1 t^{a-1}(1-t)^{b-1}\,dt\right)\\ &=&\dfrac{1}{B(a,b)}\int_0^1 t^{a-1}(1-t)^{b-1}\,dt\\ &=&\dfrac{B(a,b)}{B(a,b)}\\ &=&1 \end{array}$$ and the relation $$I_x(a,b) + I_{1-x}(b,a) = 1$$ so that $$I_x^U(a,b) = I_{1-x}(b,a).$$

# The implementation

Even if it is possible to obtain a Taylor series representation of the incomplete beta function, it seems to not be used. Indeed the MATLAB help cite only the continuous fraction representation present in "Handbook of Mathematical Functions" by Abramowitz and Stegun: $$I_x(a,b) = \dfrac{x^a(1-x)^b}{aB(a,b)}\left(\dfrac{1}{1+} \dfrac{d_1}{1+} \dfrac{d_2}{1+}\ldots\right)$$ with $$d_{2m+1} = -\dfrac{(a+m)(a+b+m)}{(a+2m)(a+2m+1)}x$$ and $$d_{2m} = \dfrac{m(b-m)}{(a+2m-1)(a+2m)}x$$ which seems to be the same strategy used by GSL. To be more precise, this continued fraction is computed directly when $$x<\dfrac{a-1}{a+b-2}$$ otherwise, the computed fraction is used to compute $I_{1-x}(b,a)$ and then it is used the fact that $$I_x(a,b) = 1-I_{1-x}(b,a).$$ In my implementation I use a continued fraction present in "Handboob of Continued Fractions for Special Functions" by Cuyt, Petersen, Verdonk, Waadeland and Jones, which is more complicated but converges in fewer steps: $$\dfrac{B(a,b)I_x(a,b)}{x^a(1-x)^b} = \mathop{\huge{\text{K}}}_{m=1}^\infty \left(\dfrac{\alpha_m(x)}{\beta_m(x)}\right),$$ where $$\begin{array}{rcl} \alpha_1(x) &=&1,\\ \alpha_{m+1}(x) &=&\dfrac{(a+m-1)(a+b+m-1)(b-m)m}{(a+2m-1)^2}x^2,\quad m\geq 1,\\ \beta_{m+1}(x) &=&a + 2m + \left( \dfrac{m(b-m)}{a+2m-1} - \dfrac{(a+m)(a+b+m)}{a+2m+1} \right)x,\quad m\geq 0. \end{array}$$ This is most useful when $$x\leq\dfrac{a}{a+b},$$ thus, the continued fraction is computed directly when this condition is satisfied, while it is used to evaluate $I_{1-x}(b,a)$ otherwise.The function is now written as a .m file, which check the validity of the inputs and divide the same in the values which need to be rescaled and in those wo doesn't need it. Then the continued fraction is computed by an external .c function. Finally, the .m file explicit $I_x(a,b)$.

## Nessun commento:

## Posta un commento